Stevens Institute of Technology - The Innovation University®
UndergraduateGraduate
Give NowLearn about GivingThe Power of Stevens Campaign
Future Student​​Parents and Family MembersStevens Alumnus/a​High School Counselor​Corporate Partner​Current Student​Friend of Stevens Log in to mySTEVENS

Search form

VisitVirtual TourAlumniNewsDirectoryAthleticsmyStevens
    About Stevens
    MissionStevens HistoryFacts & StatisticsRankings and RecognitionLeadershipStrategic PlanSustainabilityCommunity EngagementUniversity Policy LibraryAccreditationConsumer Information
    Admissions
    Undergraduate AdmissionsGraduate AdmissionsStevens Veterans OfficePre-College ProgramsTuition & Financial AidSuccess After Stevens
    Academics
    Undergraduate StudiesGraduate StudiesColleges & SchoolsStevens OnlineAcademic CatalogTechnology & Entrepreneurial ThinkingContinuing and Professional EducationGlobal OpportunitiesAcademic CultureLibrary
    Research & Entrepreneurship
    Foundational Research PillarsAnnual Innovation ExpoFaculty ResearchStudent ResearchInnovation & EntrepreneurshipStevens Venture CenterSolar DecathlonPartner with Stevens
    Campus Life
    Living at Stevens Student Affairs Undergrad Student LifeGraduate Student AffairsCareer Center Health & WellnessDiversity and Inclusion​AthleticsArts on Campus​Life in Hoboken Commencement

Available Patents & Technologies

HomeDirectory Office of Innovation and EntrepreneurshipAvailable Patents & Technologies

Search for Technologies

All Technologies  - Advanced Search   - Algolia Search  

Case ID:
FY12-022

Fabrication Of Biphasic Osteochondral Scaffold And Reconstruction Of Articular Cartilage

Case ID:
FY12-022
Web Published:
7/30/2018
Description:

Background:

Articular cartilage covers the end of all diarthroidal joints, allowing the bones to slide against each other without actually coming into contact with each other. Due to the lack of vascularity above the subchondral region, healing of damaged cartilage is very rare. Thus, the body generally cannot heal the articular cartilage on its own and the eventual degradation of the tissue leads to painful osteoarthritis and limited movement.

Current treatments for osteoarthritis include joint replacement, microfracturing to release mesenchymal stem cells, autograft procedures such as mosaicplasty or osteochondral autografts that require a donor site and additionally surgery, autologous chondrocyte implantation under the periosteal flap, and scaffold implantation. Unfortunately, although there are numerous treatments, none have been marked as a gold standard due to each one having its own drawbacks, especially when it comes to reproducing the exact physiological structure of articular cartilage capable of integrating with the surrounding tissue and bone.

Summary:

The present invention includes osteochondral scaffold for regeneration of cartilage and the adjoining bone, and a method of making same. The osteochondral scaffold includes a cylindrical outer shell including a plurality of microspheres sintered together as a unitary structure having a first hollow end and a second hollow end opposite said first hollow end. The osteochondral scaffold also includes a first spiral scaffold (a chondrogenic scaffold) having a plurality of nanofibers substantially aligned with each other. The nanofibers of the first spiral scaffold include components, such as the glycosaminoglycans chondroitin sulfate and hyaluronic acid to promote attachment, proliferation, and differentiation of mesenchymal stem cells into chondrocytes. Further, the osteochondral scaffold also includes a second spiral scaffold (an osteogenic scaffold) having a plurality of nanofibers substantially aligned with each other. The nanofibers of the second spiral scaffold include components, such as hydroxyapatite, β-glycerophosphate, and/or β-tricalcium phosphate (βTCP) to promote attachment, proliferation and differentiation of mesenchymal stem cells into osteoblasts, but in different proportions than in the first spiral scaffold. The first spiral scaffold resides in the first hollow end of the outer shell, and the second spiral scaffold resides in the second hollow end of the outer shell.

Full Patent: Fabrication Of Biphasic Osteochonral Scaffold And Reconstruction Of Articular Cartilage

Image Source: https://www.sciencedirect.com/science/article/pii/S2214031X18301700

Patent Information:
Title App Type Country Serial No. Patent No. File Date Issued Date Expire Date
Direct Link:
https://stevens.testtechnologypublisher.com/technology/11208
FY12-022
Category(s):
Bio Technology (Rx, dev's, sys)
Bookmark this page
Download as PDF
For Information, Contact:
David Zimmerman
Director of Technology Commercialization
Stevens Institute of Technogology
dzimmer3@stevens.edu
Inventors:
  • Xiaojun Yu
  • Paul Lee
Keywords:

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

© 2018 Stevens Institute of Technology.
All Rights Reserved.
Privacy Policy | Emergency Info

myStevens BookstoreMake a GiftEventsCareers
Our Location

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

Stevens Institute of Technology

1 Castle Point Terrace
Hoboken, NJ 07030

Get in Touch
201.216.5000
Social Media
FacebookTwitterInstagramYouTubeLinkedInSocial Media Hub