Stevens Institute of Technology - The Innovation University®
UndergraduateGraduate
Give NowLearn about GivingThe Power of Stevens Campaign
Future Student​​Parents and Family MembersStevens Alumnus/a​High School Counselor​Corporate Partner​Current Student​Friend of Stevens Log in to mySTEVENS

Search form

VisitVirtual TourAlumniNewsDirectoryAthleticsmyStevens
    About Stevens
    MissionStevens HistoryFacts & StatisticsRankings and RecognitionLeadershipStrategic PlanSustainabilityCommunity EngagementUniversity Policy LibraryAccreditationConsumer Information
    Admissions
    Undergraduate AdmissionsGraduate AdmissionsStevens Veterans OfficePre-College ProgramsTuition & Financial AidSuccess After Stevens
    Academics
    Undergraduate StudiesGraduate StudiesColleges & SchoolsStevens OnlineAcademic CatalogTechnology & Entrepreneurial ThinkingContinuing and Professional EducationGlobal OpportunitiesAcademic CultureLibrary
    Research & Entrepreneurship
    Foundational Research PillarsAnnual Innovation ExpoFaculty ResearchStudent ResearchInnovation & EntrepreneurshipStevens Venture CenterSolar DecathlonPartner with Stevens
    Campus Life
    Living at Stevens Student Affairs Undergrad Student LifeGraduate Student AffairsCareer Center Health & WellnessDiversity and Inclusion​AthleticsArts on Campus​Life in Hoboken Commencement

Available Patents & Technologies

HomeDirectory Office of Innovation and EntrepreneurshipAvailable Patents & Technologies

Search for Technologies

All Technologies  - Advanced Search   - Algolia Search  

Case ID:
FY12-017

Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid 3D Architecture For Energy Storage Devices

Case ID:
FY12-017
Web Published:
7/30/2018
Description:

Background:

Energy storage devices, such as supercapacitors and lithium ion batteries comprise active materials, electrolytes and separators. For optimal energy storage, active materials should have large surface areas, chemical and mechanical stability, and good electrical properties, especially electrical conductivity. As such, carbon-based materials are widely used in practical and commercially-feasible energy storage devices. Modified carbon-based materials such as activated carbon, carbon nanotubes and graphene have been suggested for such applications, but are limited in their performance due to self-aggregation and the presence of micropores, both phenomena restricting ion diffusion and causing loss of active surface area.

Summary:

In the present invention, a graphene-carbon nanotube multi-stack three-dimensional architecture (“graphene-CNT stack”) comprises alternating layers of graphene and carbon nanotubes (CNT). The CNT function as both physical spacers and electrical conduits between the graphene layers, and may be substantially parallel to each other. Also, a method of fabrication of graphene-CNT stacks includes the steps of: (i) depositing a first graphene layer on a metal foil; (ii) transferring the first graphene layer to a current collector; (iii) depositing a first layer of a catalytic metal on the first graphene layer; (iv) alternately depositing graphene and catalytic metal layers one upon the other so as to form a stack of alternating graphene and catalytic metal layers on the first graphene and catalytic metal layers; (v) transforming the catalytic metal layers into arrays of metal nanoparticles by thermal breakdown of the catalytic metal layers; and (vi) precipitating CNT outward from the metal nanoparticles. In embodiments of the present invention, the CNT are precipitated in a single execution of step (vi), resulting in simultaneous growth of the CNT and expansion of the graphene-CNT stack. Such simultaneous growth and expansion, implemented in a single step, is referred to herein as “popcorn-like growth”. In some embodiments of the present invention, the catalytic metal is a transition metal. In some such embodiments, the transition metal is nickel. In some embodiments, the graphene layers are formed by a chemical vapor deposition process. In some embodiments, the CNT are formed by a chemical vapor deposition process. In some embodiments, the catalytic metal layers are formed by a physical vapor deposition process.

Full Patent: Popcorn-like growth of graphene-carbon nanotube multi-stack hybrid three-dimensional architecture for energy storage devices

Image Source: https://link.springer.com/article/10.1007/s41918-019-00042-6

Patent Information:
Title App Type Country Serial No. Patent No. File Date Issued Date Expire Date
Direct Link:
https://stevens.testtechnologypublisher.com/technology/11207
FY12-017
Category(s):
Sensing Devices / Technology
Bookmark this page
Download as PDF
For Information, Contact:
David Zimmerman
Director of Technology Commercialization
Stevens Institute of Technogology
dzimmer3@stevens.edu
Inventors:
  • Youn-Su Kim
  • Kitu Kumar
  • Eui-Hyeok Yang
  • Frank Fisher
Keywords:

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

© 2018 Stevens Institute of Technology.
All Rights Reserved.
Privacy Policy | Emergency Info

myStevens BookstoreMake a GiftEventsCareers
Our Location

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

Stevens Institute of Technology

1 Castle Point Terrace
Hoboken, NJ 07030

Get in Touch
201.216.5000
Social Media
FacebookTwitterInstagramYouTubeLinkedInSocial Media Hub