Stevens Institute of Technology - The Innovation University®
UndergraduateGraduate
Give NowLearn about GivingThe Power of Stevens Campaign
Future Student​​Parents and Family MembersStevens Alumnus/a​High School Counselor​Corporate Partner​Current Student​Friend of Stevens Log in to mySTEVENS

Search form

VisitVirtual TourAlumniNewsDirectoryAthleticsmyStevens
    About Stevens
    MissionStevens HistoryFacts & StatisticsRankings and RecognitionLeadershipStrategic PlanSustainabilityCommunity EngagementUniversity Policy LibraryAccreditationConsumer Information
    Admissions
    Undergraduate AdmissionsGraduate AdmissionsStevens Veterans OfficePre-College ProgramsTuition & Financial AidSuccess After Stevens
    Academics
    Undergraduate StudiesGraduate StudiesColleges & SchoolsStevens OnlineAcademic CatalogTechnology & Entrepreneurial ThinkingContinuing and Professional EducationGlobal OpportunitiesAcademic CultureLibrary
    Research & Entrepreneurship
    Foundational Research PillarsAnnual Innovation ExpoFaculty ResearchStudent ResearchInnovation & EntrepreneurshipStevens Venture CenterSolar DecathlonPartner with Stevens
    Campus Life
    Living at Stevens Student Affairs Undergrad Student LifeGraduate Student AffairsCareer Center Health & WellnessDiversity and Inclusion​AthleticsArts on Campus​Life in Hoboken Commencement

Available Patents & Technologies

HomeDirectory Office of Innovation and EntrepreneurshipAvailable Patents & Technologies

Search for Technologies

All Technologies  - Advanced Search   - Algolia Search  

Case ID:
FY09-024

A High-Throughput Local Oxidation Nanopatterning Process

Case ID:
FY09-024
Web Published:
7/30/2018
Description:

In a lithographic process suitable for use in the manufacture of electronic components, oxidative reactions are employed to reproducibly fabricate patterns having micro- or nano-scale dimensions. An electrically-conductive template is fabricated to have a nanometer-scale sharp edge and describe a pattern having a micron-scale length. The oxidative reaction is mediated by a water meniscus connecting the sharp edge of the template and an oxidizable substrate. One suitable substrate is graphene. The template can be controllably positioned using a light lever method.

Full Patent: A High-Throughput Local Oxidation Nanopatterning Process

Patent Information:
Title App Type Country Serial No. Patent No. File Date Issued Date Expire Date
Direct Link:
https://stevens.testtechnologypublisher.com/technology/11183
FY09-024
Category(s):
Materials / Manufacturing & Processes
Bookmark this page
Download as PDF
For Information, Contact:
David Zimmerman
Director of Technology Commercialization
Stevens Institute of Technogology
dzimmer3@stevens.edu
Inventors:
  • Eui-Hyeok Yang
  • Kitu Kumar
Keywords:

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

© 2018 Stevens Institute of Technology.
All Rights Reserved.
Privacy Policy | Emergency Info

myStevens BookstoreMake a GiftEventsCareers
Our Location

A premier, private research university just minutes from New York City with an incredible view and exceptional access to opportunity

Stevens Institute of Technology

1 Castle Point Terrace
Hoboken, NJ 07030

Get in Touch
201.216.5000
Social Media
FacebookTwitterInstagramYouTubeLinkedInSocial Media Hub